Top 5 1/3 2/3 Steam Pressure Reducing Station - 2023 (2024)

Many industrial plants produce high-pressure steam for process work. In many of these plants, there is excess steam capacity available that can be utilized for other purposes, such as space heating, water heating, etc. Process steam is often generated at a higher pressure than can be used for the other purposes. Whatever the needs for lower pressure steam, a pressure reducing station will be required.

A pressure reducing station is more than just a reducing valve fed off a steam main. A properly designed and installed pressure reducing station takes into consideration velocity, good piping practices, and safety.

After selecting the correct pressure-reducing valve (see Info-Tec 28), the next step in designing the complete reducing station is to pipe size for velocity. The pressure difference created by the reducing valve creates higher steam velocity across the seat of the reducing valve. Sonic velocity will occur. The pipes going into or out of the reducing valve cannot tolerate this. Erosion of materials and excessive noise will be generated. It is good practice to limit steam velocity to between 4000 and 6000 feet per minute to prevent erosion and noise. Properly sized pipes also allow the downstream pressure sensing line to function. Excessive steam velocity passing the sensing line connection will cause inaccurate variable pressures to be sensed as the load varies. Downstream pressure cannot be maintained.

There is a formula to find steam velocity in pipes. Velocity = 2.4 x flow in lbs/hr x sp. vol. in cu. ft./lb at the flowing pressure over the internal area of the pipe in sq. inches.

This formula has been incorporated into an easy-to-use chart, so there is no need to make laborious calculations. See Figure1.

Figure 1.

Example 1, using the chart:

A pressure-reducing valve has been sized for reducing 100-psig-inlet pressure to 25-psig. Capacity is 1000 lbs/hr. Find the upstream and downstream pipe sizes for reasonable quiet steam velocity.

For upstream pipe size, enter the chart at “A,” 1000 lbs/hr. Go horizontally to where the 1000 lbs/hr line intersects 100 psig, point “B.” From point “B” go vertically to intersect with the first pipe size line inside the shaded area, the 4000 to 6000 FPM area. This is point “C,” 1-1/2” schedule 40-iron pipe. If point “C” is extended horizontally to the right side velocity scale, you see that the actual velocity is about 4800 ft./min., point “D.”

For downstream piping, enter the chart once again at “A.” Go horizontally to the downstream pressure of 25 psig, point “E.” Go vertically from “C” to intersect with the first pipe size line in the shaded area, point “F,” 2-1/2” schedule 40-iron pipe. Actual velocity shown at “G” is about 5500 FPM.

The upstream piping to the pressure regulator should be 1-1/2”, the downstream piping out of the regulator should be 2-1/2.” (If schedule 80 iron pipe is going to be used, note the multiplying factor in the chart.)

One more example before expanding on proper piping practice.

Example 2:

Inlet pressure: 100 psig

Reduced pressure: 10 psig

Flow rate: 6000 lbs/hr

Pressure regulator selected: 2-1/2” (Info-Tec 28)

Upstream piping size for schedule 40 pipe. Enter chart at 6000 lbs/hr and intersect at 100-lb line. Vertically to first pipe size line in shaded area, 4” pipe.

Downstream Pipe: Enter chart at 6000 lbs/hr. Go to the 10-psig line and vertically intersect it at the 8” pipe. The lengths of these up and downstream pipes are also important. Upstream pipe should be a minimum of six pipe diameters long. Downstream pipe a minimum of 10 pipe diameters long. Using example 2, these pipes should be at least two feet long for upstream, and 80 inches long for downstream. These are minimum lengths and sizes. You can always go longer and larger (cost could become a factor).

Good steam piping practice involves the use of eccentric couplings, mounting accessories so no traps are formed, and proper pitching of lines.

Figure 2 is a schematic diagram of a typical pressure reducing station. Study Figure 2. Note the use of eccentric couplings. These prevent formation of water pockets where condensate could collect. A Y pipe strainer is installed laying on its side for the same reason, or it would have to be drained with a trap. Manual ball valves are used as shut-offs to facilitate repair or replacement of failed parts. An optional bypass is used when some steam flow must be maintained at all times, even during repairs. The bypass line size is usually about half the line size of the pressure regulator, since it will only be opened on an emergency basis, for hopefully a relatively short time.

Figure 2.

Safety is addressed by using a downstream relief valve with a pressure setting of either 5 lbs over the usual downstream pressure, or 5 lbs under the downstream equipment’s lowest pressure rated item. The relief valve is needed to protect the equipment should the pressure regulator fail. Its capacity rating should, at least, match or exceed the maximum flow rate. Note that if the bypass is ever fully opened, close to full upstream pressure will be applied downstream of the regulator. Codes prevent the installation of a shut-off valve between a relief valve and the system it is protecting, so careful adjustment of the manual bypass valve needs to be observed when using the bypass to prevent the relief valve from opening.

Caution: The system should be constantly attended whenever the bypass is opened. Never remove the relief valve and plug the opening! Expensive damage to equipment could result, not to mention a very unsafe and dangerous condition.

A separator is shown as part of the reducing station to insure “dry” steam enters the pressure regulator. “Wet” steam is very detrimental to a pressure regulator. A separator needs to be drained by a trap system. Unfortunately, separators are expensive and are almost never purchased as part of the reducing station. The steam supply line may (should) be dripped before entering the pressure reducing station. When designing and quoting the reducing station, the separator is best quoted as an option.

Gauges are selected according to the pressures being dealt with. The gauges should be mounted on siphon tube assemblies with valves to facilitate quick and easy replacement.

To keep costs down, the strainer and ball valves are the same pipe size as the pressure regulator and should be as close coupled as possible to the regulator. Use close or short nipples. No unions are shown in Figure 2, but should be used as needed.

The regulator’s sensing line should be pitched down slightly so any condensate will drain out of it. It must be at least four feet long and connect into the larger downstream pipe near the outlet end of the pipe. If copper tube is used for the sensing line, care must be taken not to kink the tube, let is sag, or form any trap in its length.

Figure 3 is a picture of what a typical reducing station might look like. Figure 3 shows gate valves instead of better, less expensive, ball valves.

Figure 3.

Often a control valve will be installed directly downstream of the reducing station.

Figure 4 shows such an installation. Chances are the control valve will be the same line size as the pressure regulator. It should be installed downstream of the enlarged downstream piping using eccentrics as shown. The ball valve can be moved downstream of the control valve. If a bypass is used, connect it downstream of the ball valve. As you can see, a steam pressure regulator reducing station is not just a pressure regulator cut into a steam line. The station needs to be carefully designed and properly installed. The entire station should pitch down slightly in the direction of flow. Done correctly, the station will give many years of quiet, satisfactory, performance.

Figure 4.

Table of Contents

Top 5 1/3 2/3 steam pressure reducing station edited by Top Chef

GP-2000- Setting Up 1/3-2/3 PRV Station – Armstrong International |

  • Author: armstronginternational.com
  • Published: 06/14/2022
  • Review: 4.84 (736 vote)
  • Summary: GP-2000- Setting Up 1/3-2/3 PRV Station … We solve your problems and make life easier. As your thermal utility partner, Armstrong can satisfy your industry’s

Pressure Reducing and Surplussing Valves

  • Author: spiraxsarco.com
  • Published: 03/11/2022
  • Review: 4.6 (370 vote)
  • Summary: Well designed steam systems produce clean dry steam for delivery at high pressure – the best quality steam at the lowest cost. Lower pressure steam is

Thread: What is the purpose of 1/3-2/3 steam stations?

  • Author: hvac-talk.com
  • Published: 01/17/2022
  • Review: 4.2 (542 vote)
  • Summary: · As I picture what you have – there are pressure reducing valves in parallel. One handling 33% of the load and the one handling 66% of the
  • Matching search: For downstream piping, enter the chart once again at “A.” Go horizontally to the downstream pressure of 25 psig, point “E.” Go vertically from “C” to intersect with the first pipe size line in the shaded area, point “F,” 2-1/2” schedule 40-iron …

3 Typical Systems of Steam Pressure Reducing Station

  • Author: cncontrolvalve.com
  • Published: 07/22/2022
  • Review: 4.14 (359 vote)
  • Summary: · #1 Using a Steam Self-Operated Pressure Regulator · #2 Using a pneumatic or electric globe type control valve to control the process parameters
  • Matching search: Using a self-operated steam pressure regulator as a steam pressure reducing station is simple and convenient, with little maintenance costs, and is especially suitable for on-site situations where there is no electricity and no air power. Therefore, …

Set-up and design for a steam-pressure-reducing valve station

  • Author: plantengineering.com
  • Published: 09/04/2022
  • Review: 3.83 (488 vote)
  • Summary: · A steam pressure-reducing valve (PRV) station is an indispensable part of many steam systems. It plays a critical role by providing the
  • Matching search: Placing the steam PRV correctly in the station helps to ensure proper system operation. Make sure the distance after the steam PRV is at least 10 pipe diameters before any change in steam flow direction or before the steam line takes offline. The …
Top 5 1/3 2/3 Steam Pressure Reducing Station - 2023 (2024)

FAQs

How do you size a steam PRV? ›

Proportional control valves should be sized using a pressure drop through the valve of 80% gauge inlet pressure (PSIG) for low pressure steam systems. (Low pressure is generally defined as systems carrying 15 PSIG of less.) For steam pressures over 15#, recommended pressure drop is 50% of inlet gauge pressure.

What is the max pressure for pressure reducing valve? ›

Pressure Reducing Valves, abbreviated as PRV, are valves that decrease incoming water pressure into your home. Although high water pressure is often seen as a positive, most homes should have a maximum PSI of 75. Anything above 75 can be detrimental to your comfort and home. Normal operating pressure is 60-65.

What causes a pressure reducing valve to fail? ›

There are two main causes for your pressure reducing valve to fail due to controlled excess pressure under normal load conditions: Dirt or foreign material has got between the pilot valve seat and the head. Foreign particles have been introduced between the head and the seat of the main valve.

What are the different types of steam pressure reducing valves? ›

Non-piloted, Direct Acting Valve: Adjustment spring places downward pressure setting force directly on the main valve. Pilot-Operated Valve: Adjustment spring places downward pressure setting force directly on a pilot valve, which is smaller and different from the main valve.

What is the correct sizing of a pressure reducing valve? ›

Set to approximately 50–70 kPa (0,5–0,7 bar) higher than the setting of the main pressure reducing valve, and sized according to the minimum flow rate demand of the system. The minimum flow rate demand can be assumed to be 20–30 % of the design flow rate.

How do you calculate the relief valve size? ›

When sizing for multiple valve applications, the total required relief area is calculated on an overpressure of 16% or 4 psi, whichever is greater. Back pressure in the downstream piping affects the standard type of pressure relief valve.

How do you size a pressure reducing regulator? ›

Use the formula: 0.33 x A1 x P1 = Q1 (does not apply to regulators with filters). A1 = seat orfice area in mm² P1 = inletpressure in bar (a) Q1 = max. flow of air in Nm³/hour through the seat orifice area. Normally the customer gives you the flow (Q1) and the gas.

How do I choose a pressure regulator? ›

Important considerations include: operating pressure ranges for the inlet and outlet, flow requirements, the fluid (Is it a gas, a liquid, toxic, or flammable?), expected operating temperature range, material selection for the regulator components including seals, as well as size and weight constraints.

What is the difference between PRV and pressure reducing valve? ›

Pressure-reducing valves are used when maintaining consistent levels of pressure throughout an entire system is necessary, while pressure-relief valves are used when it's essential that extreme overpressure conditions be prevented from occurring within the system.

How often do pressure reducing valves need to be replaced? ›

Make sure you replace your PRV every 4-5 years to avoid problems due to age.

What are three common valve failures? ›

Four common failures associated with automatic valves are found at a high frequency in poorly performing control loops. These are Dead band, Stiction, Positioner overshoot, Incorrect valve sizing, and Nonlinear flow characteristic.

Which valve is best for steam control? ›

By far the most widely used valve type for the automatic control of steam processes and applications is the globe valve.

What is valve types 5 3? ›

5/3 valves have 2 coils and if neither is energised, the default state it returns to in the centre position can either be all ports blocked, all ports open or pressure applied in that the inlet pressure is connected to both outlet ports.

What are the 5 major types of valves? ›

The following types of valves are used in a variety of applications, these descriptions may provide a basic guideline in the selection of valves.
  • BALL VALVES. ...
  • BUTTERFLY VALVES. ...
  • CHECK VALVES. ...
  • GLOBE VALVES. ...
  • GATE VALVES. ...
  • PLUG VALVES.
Oct 26, 2016

How is PSV size calculated? ›

The required orifice area in the PSV calculation formula is inversely proportional to the coefficient of discharge (Kd). In other words, the smaller the Kd, higher orifice area will be required. Typically, ASME-certified Kd values are smaller than API Kd values.

What is the set pressure for a steam safety valve? ›

A safety valve functions the same way but with pressure not temperature. The set pressure must be at least 10% above the operating pressure or 5 psig, whichever is greater. So, if a system is operating at 25 psig, then the minimum set pressure of the safety valve would be 30 psig.

What size valve should I use? ›

As a general rule, the maximum capacity of a control valve should be 15-50% above the maximum process flow, and the minimum required Cv must be within the available rangeability of the valve for proper control.

References

Top Articles
Latest Posts
Article information

Author: Lilliana Bartoletti

Last Updated:

Views: 6236

Rating: 4.2 / 5 (73 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Lilliana Bartoletti

Birthday: 1999-11-18

Address: 58866 Tricia Spurs, North Melvinberg, HI 91346-3774

Phone: +50616620367928

Job: Real-Estate Liaison

Hobby: Graffiti, Astronomy, Handball, Magic, Origami, Fashion, Foreign language learning

Introduction: My name is Lilliana Bartoletti, I am a adventurous, pleasant, shiny, beautiful, handsome, zealous, tasty person who loves writing and wants to share my knowledge and understanding with you.